Maximum Principle Preserving Schemes for Binary Systems with Long-Range Interactions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum entropy principle explains quasistationary states in systems with long-range interactions: the example of the Hamiltonian mean-field model.

A generic feature of systems with long-range interactions is the presence of quasistationary states with non-Gaussian single particle velocity distributions. For the case of the Hamiltonian mean-field model, we demonstrate that a maximum entropy principle applied to the associated Vlasov equation explains known features of such states for a wide range of initial conditions. We are able to repro...

متن کامل

Coarse-graining schemes for stochastic lattice systems with short and long-range interactions

We develop coarse-graining schemes for stochastic many-particle microscopic models with competing shortand long-range interactions on a d-dimensional lattice. We focus on the coarse-graining of equilibrium Gibbs states and using cluster expansions we analyze the corresponding renormalization group map. We quantify the approximation properties of the coarse-grained terms arising from different t...

متن کامل

Maximum principle preserving high order schemes for convection-dominated diffusion equations

The maximum principle is an important property of solutions to PDE. Correspondingly, it’s of great interest for people to design a high order numerical scheme solving PDE with this property maintained. In this thesis, our particular interest is solving convection-dominated diffusion equation. We first review a nonconventional maximum principle preserving(MPP) high order finite volume(FV) WENO s...

متن کامل

Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments

In an earlier study (Zhang & Shu 2010b J. Comput. Phys. 229, 3091–3120 (doi:10.1016/ j.jcp.2009.12.030), genuinely high-order accurate finite volume and discontinuous Galerkin schemes satisfying a strict maximum principle for scalar conservation laws were developed. The main advantages of such schemes are their provable high-order accuracy and their easiness for generalization to multi-dimensio...

متن کامل

On the maximum principle preserving schemes for the generalized Allen-Cahn Equation

This paper is concerned with the generalized Allen-Cahn equation with a nonlinear mobility that can degenerate, which also includes an advection term as found in phase-field models. A class of maximum principle preserving schemes will be studied for the generalized Allen-Cahn equation, with either the commonly used polynomial free energy or the logarithmic free energy, and with a nonlinear dege...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Computing

سال: 2020

ISSN: 0885-7474,1573-7691

DOI: 10.1007/s10915-020-01286-x